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ABSTRACT Research in speech recognition and synthesis
over the past several decades has brought speech technology
to a point where it is being used in “real-world” applications.
However, despite the progress, the perception remains that the
current technology is not flexible enough to allow easy voice
communication with machines. The focus of speech research
is now on producing systems that are accurate and robust but
that do not impose unnecessary constraints on the user. This
chapter takes a critical look at the shortcomings of the current
speech recognition and synthesis algorithms, discusses the
technical challenges facing research, and examines the new
directions that research in speech recognition and synthesis
must take in order to form the basis of new solutions suitable
for supporting a wide range of applications.

After many years of research, speech recognition and synthesis
systems have started moving from the controlled environments
of research laboratories to applications in the real world.
Voice-processing technology has matured to such a point that
many of us wonder why the performance of automatic systems
does not approach the quality of human performance and how
soon this goal can be reached.

Rapid advances in very-large-scale integrated (VLSI) circuit
capabilities are creating a revolution in the world of computers
and communications. These advances are creating an increas-
ing demand for sophisticated products and services that are
easy to use. Automatic speech recognition and synthesis are
considered to be the key technologies that will provide the
easy-to-use interface to machines.

The past two decades of research have produced a stream of
increasingly sophisticated solutions in speech recognition and
synthesis (1). Despite this progress, the perception remains
that the current technology is not flexible enough to allow easy
voice communication with machines. This chapter reviews the
present status of this important technology, including its
limitations, and discusses the range of applications that can be
supported by our present knowledge. But as we look into the
future and ask which speech recognition and synthesis capa-
bilities will be available about 10 years from now, it is
important also to discuss the technical challenges we face in
realizing our vision of the future and the directions in which
new research should proceed to meet these challenges. We will
examine these issues in this paper and take a critical look at the
shortcomings of the current speech recognition and synthesis
algorithms.

Much of the technical knowledge that supports the current
speech-processing technology was created in a period when
our ability to implement technical solutions on real-time
hardware was limited. These limitations are quickly disappear-
ing, and we look to a future at the end of this decade when a
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single VLSI chip will have a billion transistors to support much
higher processing speeds and more ample storage than is now
available.

The speech recognition and synthesis algorithms available at
present work in limited scenarios. With the availability of fast
processors and a large memory, tremendous opportunity exists
to push speech recognition technology to a level where it can
support a much wider range of applications. Speech databases
with utterances recorded from many speakers in a variety of
environments have been important in achieving the progress
that has been realized so far. But on the negative side, these
databases have encouraged speech researchers to rely on
trial-and-error methods, leading to solutions that are narrow
and that apply to specific applications but do not generalize to
other situations. These methods, although fruitful in the early
development of the technology, are now a hindrance as we
become much more ambitious in seeking solutions to bigger
problems. The time has come to set the next stage for the
development of speech technology, and it is important to
realize that a solid base of scientific understanding is absolutely
necessary if we want to move significantly beyond where we are
today.

The 1990s will be a decade of rising expectations for speech
technology, and speech research will expand to cover many
areas, from traditional speech recognition and synthesis to
speech understanding and language translation. In some areas
we will be just scratching the surface and defining the impor-
tant issues. But in many others the research community will
have to come up with solutions to important and difficult
problems in a timely fashion. This paper cannot discuss all the
possible new research directions but will be limited to exam-
ining the most important problems that must be solved during
this decade.

CURRENT CAPABILITIES

Voice communication from one person to another appears to
be so easy and simple. Although speech technology has
reached a point where it can be useful in certain applications,
the prospect of a machine understanding speech with the same
flexibility as humans do is still far away. The interest in using
speech interface to machines stems from our desire to make
machines easy to use. Using human performance as a bench-
mark for the machine tells us how far we are from that goal.
For clean speech, automatic speech recognition algorithms
work reasonably well (2, 3) with isolated words or words
spoken in grammatical sentences, and the performance is
continuing to improve. Fig. 1 shows the word error rate for
various test materials and the steady decrease in the error rate
achieved from 1980 to 1992. This performance level is not very
different from that obtained in intelligibility tests with human
listeners. The performance of automatic methods, however,
degrades significantly in the presence of noise (or distortion)
(4) and for conversational speech.
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Fic. 1. Reduction in the word error rate for different automatic speech recognition tasks between 1980 and 1992.

There are many factors besides noise that influence the
performance of speech recognition systems. The most impor-
tant of these are the size of the vocabulary and the speaking
style. Fig. 2 shows examples of automatic speech recogition
tasks that can be handled by automatic methods for different
vocabulary sizes and speaking styles. Generally, the number of
confused words increases with the vocabulary size. Current
systems can properly recognize a vocabulary of as many as a
few thousand words, while the speaking style can vary over a
wide range, from isolated words to spontaneous speech. The
recognition of continuously spoken (fluent) speech is signifi-
cantly more difficult than that of isolated words. In isolated
words, or speech where words are separated by distinct pauses,
the beginning and the end of each word are clearly marked. But
such boundaries are blurred in fluent speech. The recognition
of spontaneous speech, such as is produced by a person talking
to a friend on a well-known subject, is even harder.

Examples of speech recognition applications that can be
handled by the current technology are shown on the left side
of the diagonal line in Fig. 2. These include recognition of voice
commands (prompts), names, digit strings, and key-word spot-
ting. New applications in speech recognition are rapidly
emerging (5). Commercial products are available for the
recognition of isolated words, connected digit strings, and
speech with vocabularies of up to several thousand words
spoken with pauses between words.

The items on the right of the diagonal line in Fig. 2 are
examples of speech recognition tasks that work in laboratory

environments but that need more research to become useful
for real applications (6). Automatic recognition of fluent
speech with a large vocabulary is not feasible unless constraints
on the syntax or semantics are introduced. The present knowl-
edge in handling natural languages and in following a dialogue
is very much limited because we do not understand how to
model the variety of expressions that natural languages use to
convey concepts and meanings.

Text-to-speech synthesis systems suffer from much of the
same kinds of problems as speech recognition. Present text-
to-speech systems can produce speech that is intelligible
(although significantly lower intelligibility than natural speech)
but not natural sounding. These systems can synthesize only a
few voices reading grammatical sentences but cannot capture
the nuances of natural speech.

CHALLENGING ISSUES IN SPEECH RESEARCH

For speech technology to be used widely, it is necessary that
the major roadblocks faced by the current technology be
removed. Some of the key issues that pose major challenges in
speech research are listed below:

® Ease of use. Unless it is easy to use, speech technology will
have limited applications. What restrictions are there on the
vocabulary? Can it handle spontaneous speech and natural
spoken language?

® Robust performance. Can the recognizer work well for
different speakers and in the presence of the noise, reverber-

NATURAL
PO O CONVERSATION—= O
DIALOGUE WITH
CONSTRAINED
. SEMANTICS
FLUENT| WORD SPOTTING - . _
SPEECH
SPEAKING READ DIGIT STRINGS R DICTATION
STYLE SPEECH CONSTRAINED
SYNTAX
CONNECTED DIRECTORY R
WORDS ASSISTANCE
NAMES
VOICE
ISOLATED PROMPTS  VOICE
WORDS COMMANDS
—L 1 __1__ -
20 200 2000 20000 UNRESTRICTED
SIZE OF VOCABULARY
(NUMBER OF WORDS)

Fic. 2. Different speech recognition tasks shown in a space of two dimensions: speaking style and size of vocabulary.
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ation, and spectral distortion that are often present in real
communication channels?

® Automatic learning of new words and sounds. In real
applications the users will often speak words or sounds that are
not in the vocabulary of the recognizer. Can it learn to
recognize such new words or sounds automatically?

® Grammar for spoken language. The grammar for spoken
language is quite different from that used in carefully con-
structed written text. How does the system learn this grammar?

® Control of synthesized voice quality. Can text-to-speech
synthesis systems use more flexible intonation rules? Can
prosody be made dependent on the semantics?

® Integrated learning for speech recognition and synthesis.
Current speech synthesis systems are based on rules created
manually by an experienced linguist. Such systems are con-
strained in what they can do. Can new automatic methods be
developed for the training of the recognizer and synthesizer in
an integrated manner?

Some of the issues mentioned above, such as ease of use and
robustness, need to be addressed in the near future and
resolved. Others, such as automatic learning of new words and
sounds or grammar for spoken language, will need major
advances in our knowledge. Understanding of spontaneous
speech will require tight integration of language and speech
processing.

A number of methods have been proposed to deal with the
problem of robustness. The proposed methods include signal
enhancement, noise compensation, spectral equalization, ro-
bust distortion measures, and novel speech representations.
These methods provide partial answers valid for specific
situations but do not provide a satisfactory answer to the
problem. Clean, carefully articulated, fluent speech is highly
redundant, with the signal carrying significantly more infor-
mation than is necessary to recognize words with high accu-
racy. However, the challenge is to realize the highest possible
accuracy when the signal is corrupted with noise or other
distortions and part of the information is lost. The perfor-
mance of human listeners is considered to be very good, but
even they do not approach high intelligibility for words in
sentences unless the signal-to-noise (S/N) ratio exceeds 18 dB

3)-

THE ROBUSTNESS ISSUE

Let us consider the robustness issue in more detail. Current
speech recognition algorithms use statistical models of speech
that are trained from a prerecorded speech database. In real
applications the acoustic characteristics of speech often differ
significantly from that of speech in the training database, and
this mismatch causes a drop in the recognition accuracy. This
is illustrated for noise-contaminated speech in Fig. 3, which
shows the recognition accuracy as a function of the S/N ratio
for both matched and mismatched training and test conditions
(4, 7). These results point to a serious problem in current
speech recognition systems: the performance degrades when-
ever there is a mismatch between levels of noise present in
training and test conditions. Similar problems arise with
spectral distortion, room reverberation, and telephone trans-
mission channels (8). Achieving robust performance in the
presence of noise and spectral distortion has become a major
issue for the current speech recognition systems.

Robust performance does not come by chance but has to be
designed into the system. Current speech recognition algo-
rithms are designed to maximize performance for the speech
data in the training set, and this does not automatically
translate to robust performance on speech coming from
different user environments. Fig. 4 shows the principal func-
tions of an automatic speech recognition system. The input
speech utterance is analyzed in short quasi-stationary seg-
ments, typically 10 to 30 ms in duration, to provide a para-
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FiG. 3. Speech recognition performances in noisy conditions: @,
training and testing have matched S/N ratios; A, only clean training
data are used; O); training and testing S/N ratios are mismatched with
test S/N ratio fixed at 18 dB (4).

metric representation at the acoustic level. The parameters
from the unknown input utterance are then compared to
patterns derived from a large training set of speech utterances
collected from many speakers in many different speaking
environments. This comparison provides a set of scores rep-
resenting the similarity between the unknown pattern and each
of the prestored patterns. The last step combines these scores
together with other knowledge about the speech utterance,
such as the grammar and semantics, to provide the best
transcription of the speech signal. To achieve robustness, each
function shown in the block diagram must be designed to
minimize the loss in performance in situations when there is
a mismatch between the training and test conditions.

A speech recognizer can be regarded as a method for
compressing speech from a high rate needed to represent
individual samples of the waveform to a low phonemic rate to
represent speech sounds. Let us look at the information rate
(bit rate) at different steps in the block diagram of Fig. 4. The
bit rate of the speech signal represented by its waveform at the
input of the recognizer is in the range of 16 to 64 kb/s. The rate
is reduced to approximately 2 kb/s after acoustic analysis and
to a phonemic rate in the range 30 to 50 b/s after pattern
matching and selection.

The bit rate at the acoustic parameter level is large, and
therefore the pattern-matching procedure must process speech
in “frames” whose duration is only a small fraction of the
duration of a sound. The scores resulting from such a pattern-
matching procedure are unreliable indicators of how close an
unknown pattern from the speech signal is to a particular
sound. The reliability can be improved by reducing the max-
imum number of acoustic patterns in the signal (or its bit rate)
that are evaluated for pattern matching. The bit rate for
representing the speech signal depends on the duration of the
time window that is used in the analysis shown in Fig. 5 and is
about 200 b/s for a window of 200 ms. Suppose we wish to
compute the score for a speech segment 100 ms in duration,
which is roughly the average length of a speech sound. The
number of acoustic patterns that the pattern-matching step has
to sort out is 2200 at 2000 b/s, but that number is reduced to
only 220 at 200 b/s. This is a reduction of 2'¥ in the number
of patterns that the pattern-matching procedure has to handle.
The present speech analysis methods generate a static (quasi-
stationary) representation of the speech signal. To achieve
robust performance, it is important to develop methods that
can efficiently represent speech segments extending over a
time interval of several hundred milliseconds. An example of
a method for representing large speech segments is described
in the next section.
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F1G. 4. Principal functions of an automatic speech recognition system.

SPEECH ANALYSIS

The goal of speech analysis is to provide a compact represen-
tation of the information content in the speech signal. In
general, those representations that eliminate information not
pertinent to phonetic differences are effective. The short-time
power spectrum of speech, obtained either from a filter bank,
Fourier transform, or linear prediction analysis, is still con-
sidered the most effective representation for speech recogni-
tion (the power spectrum is often converted into the cepstrum
to provide a set of 10 to 15 coefficients). However, the power
spectrum is affected by additive noise and linear-filtering
distortions. We need new representations that go beyond the
power spectrum and represent the frequency content of the
signal.

The cepstral coefficients are instantaneous (static) features.
One of the important advances in the acoustic representation
of speech has been the introduction of dynamic features (9),
such as first- and second-order derivatives of the cepstrum.
Recently, new representations based on human hearing have
been proposed (10), but these representations have not yet
been found to have significant advantage over the spectral
representation. The following is a list of interesting new
research directions in speech analysis:

® Time-frequency and wavelet representations. Time-
frequency representations map a one-dimensional signal into
a two-dimensional function of time and frequency (11-13).
The traditional Fourier analysis methods divide the time-
frequency plane in an inflexible manner not adapted to the
needs of the signal. New methods of time-frequency analysis
are emerging that allow more general partitioning of the
time-frequency plane or tiling that adapts to time as well as
frequency as needed (11, 14).

® Better understanding of auditory processing of signals. Al-
though auditory models have not yet made a significant impact
on automatic speech recognition technology, they exhibit
considerable promise. What we need is a better understanding
of the principles of signal processing in the auditory periphery

20k

that could lead to more robust performance in automatic
systems.

® Articulatory representation. Models that take advantage of
the physiological and physical constraints inherent in the
vocal-tract shapes used during speech production can be useful
for speech analysis. Significant progress (15) has been made
during the past decade in developing articulatory models
whose parameters can be estimated from the speech signal.

® Coarticulation models at the acoustic level. During speech
production, the articulators move continuously in time,
thereby creating a considerable overlap in the acoustic real-
izations of phonemes. Proper modeling of coarticulation ef-
fects at the acoustic level can provide better accuracy and
higher robustness in speech recognition.

TEMPORAL DECOMPOSITION

We discussed earlier the importance of extending the quasi-
stationary static model of speech to a dynamic model that is
valid over much longer nonstationary segments. We describe
here one such model, known as temporal decomposition (16).
The acoustics of the speech signal at any time are influenced
not only by the sound being produced at that time but also by
neighboring sounds. Temporal decomposition seeks to sepa-
rate the contributions of the neighboring sounds on the
acoustic parameters by using a coarticulation model in which
the contributions of sounds are added together with proper
weights (16-19).

In the temporal decomposition model the continuous vari-
ations of acoustic parameters are represented as the output of
a linear time-varying filter excited by a sequence of vector-
valued delta functions located at nonuniformly spaced time
intervals (17). This is illustrated in Fig. 6, where the linear filter
with its impulse response specified by A(t, 7) (response at time
t due to a delta function input at time 7) has the role of
smoothing the innovation x(¢) that is assumed to be nonzero
only at discrete times corresponding to the discrete nature of
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Fic. 5. Information rate (b/s) of speech signal as a function of the length of the time window used in the analysis.
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F1G.6. Temporal decomposition model to represent coarticulation
at the acoustic level.

speech events. The number of nonzero components in the
innovation in any given time interval is roughly equal to the
number of speech events (and silence) contained in that
interval of the spoken utterance. Speech analysis techniques
have been developed to determine both the innovation and the
time-varying impulse response of the filter for any utterance
(17-19). Fig. 7 shows an example of this decomposition for the
word “four.” The three parts of the figure show: (a) even
components of the linear predictive coding (LPC) line spectral
frequencies as a function of time, (b) the filter impulse
responses for each speech event, and (c) the waveform of the
word “four.” In this example the entire variations in the
acoustic parameters over 0.5 s of the utterance for the word
“four” can be represented as the sum of five overlapping
speech events. We find that the information rate of the
innovation signal x(¢) is about 100 b/s, which is much lower
than the corresponding rate for the acoustic parameters y(z).

TRAINING AND PATTERN-MATCHING ISSUES

The application of hidden Markov models (HMMs) has been
a major factor behind the progress that has been achieved in
automatic speech recognition (1). The HMM framework
provides a mathematically tractable approach to the training
and classification problems in speech recognition. While the
speech recognition algorithms based on the HMM are impor-
tant at the current state of the technology, these algorithms
suffer from fundamental shortcomings (20) that must be
overcome.

-]
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The HMM method is based on the Bayesian approach to
pattern classification, which assumes that the statistical distri-
butions of the HMM states are known or can be estimated. In
the HMM, therefore, the problems of training and recognition
are transformed to the problem of estimating distributions
from the training data. In reality this is a difficult task requiring
untested assumptions about the form and the underlying
parameters of the distributions. Moreover, the misclassifica-
tion errors depend on the amount of overlap between the tails
of the competing distributions and not on the exact shape of
the distributions for the classes. Thus, the emphasis in the
HMM approach on distribution estimation is unnecessary; a
cost function defined in a suitable fashion is all that is required.

Other approaches to speech recognition based on discrimi-
nant functions are being investigated and appear to be prom-
ising. Significant progress has been made in formulating the
discriminant approach for speech recognition and in develop-
ing methods that seek to minimize the misclassification errors
(21). The major issues in training and recognition are listed
below:

® Training and generalization. An important question is
whether the trained patterns characterize the speech of only
the training set or whether they also generalize to speech that
will be present in actual use.

® Discriminative training. Although the discriminative train-
ing does not require estimation of distributions, they still need
knowledge of the discriminant functions. What are the most
appropriate discriminant functions for speech patterns?

® Adaptive learning. Can the learning of discriminant func-
tions be adaptive?

® Artificial neural networks. Despite considerable research,
neural networks have not yet shown significantly better per-
formance than HMM algorithms. New research must address
the important issue—what is the potential of neural networks
in providing improved training and recognition for speech
patterns?

ADDITIONAL ISSUES IN SPEECH SYNTHESIS

Much of what has been discussed so far applies to speech
synthesis as well. However, there are additional research issues
that must be considered. We will discuss some of these issues
in this section.

TIME (MSEC)

FiG. 7. Temporal decomposition of the spoken word “four”: (a) LPC line spectral parameters, (b) filter impulse responses for the different

speech events, and (c) speech waveform for the speech utterance.
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The core knowledge that forms the basis of current speech
recognition and synthesis algorithms is essentially the same.
However, there are important differences in the way the two
technologies have evolved. Speech synthesis algorithms gen-
erate continuous speech by concatenating segments of stored
speech patterns, which are selected to minimize discontinuities
in the synthesized speech. Segmentation of speech into ap-
propriate units, such as diphones or syllables, was therefore
incorporated into the speech synthesis technology at an early
stage and required the assistance of trained people (or pho-
neticians) to learn the segmentation task. Lack of accurate
models for representing the coarticulation in speech and the
dynamics of parameters at the acoustic or the articulatory level
has been the major obstacle in developing automatic methods
to carry out the segmentation task. Without automatic meth-
ods, it is difficult to process large speech databases and to
develop models that represent the enormous variability
present in speech due to differences in dialects, prosody,
pronunciation, and speaking style. Future progress in synthe-
sizing speech that offers more than minimal intelligibility
depends on the development of automatic methods for ex-
tracting parameters from speech to represent the important
sources of variability in speech in a consistent fashion. Auto-
matic methods for segmentation are also needed in order to
develop multilingual capability in speech synthesis.

The primary goal of speech synthesis systems so far has been
to synthesize speech from text—a scenario coming out of an
earlier interest in “reading machines for the blind.” New
applications of speech synthesis that do not depend on syn-
thesizing speech from text are rapidly emerging. As we proceed
to develop new applications that involve some kind of dialogue
between humans and machines, it is essential that the issue of
synthesizing speech from concepts be addressed.

CONCLUSIONS

Voice communication holds the promise of making machines
easy to use, even as they become more complex and powerful.
Speech technology is reaching an important phase in its
evolution and is getting ready to support a wide range of
applications. This paper discussed some of the important
technical challenges in developing speech recognition and
synthesis technology for the year 2001 and the new research
directions needed to meet these challenges.

Robust performance in speech recognition and more flex-
ibility in synthesizing speech will continue to be major prob-
lems that must be solved expeditiously. The solutions will not
come by making incremental changes in the current algorithms
but rather by seeking new solutions that are radically different
from the present.
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New speech analysis methods must move beyond quasi-
stationary representations of the power spectrum to dynamic
representations of speech segments. Solution of the coarticu-
lation problem at the acoustic level remains one of the most
important problems in speech recognition and synthesis. Tem-
poral decomposition is a promising method along this direc-
tion.

In speech recognition, new training procedures based on
discriminant functions show considerable promise and could
avoid the limitations of the HMM approach. The discriminant
function approach achieves higher performance by using a
criterion that minimizes directly the errors due to misclassifi-
cation. In speech synthesis, articulatory models and automatic
methods for determining their parameters offer the best hope
of providing the needed flexibility and naturalness in synthe-
sizing a wide range of speech materials.
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